當前位置:首頁>知識> 哥德巴赫猜想證明了嗎?為什么被稱為1+1呢
發布時間:2026-01-17閱讀( 7)
導語:現在人類比較喜歡進行一些猜想,比如有關未來人類生活的十大猜想等等,在數學界猜想等也是比較盛行的。哥德巴赫也有一大重要猜想,也就是“1+1”猜想,下面和小編一起了解一下吧。
哥德巴赫猜想是最廣為人知的數學難題,中學生就都知道這個猜想:“所有大于4的偶數都可以分解成兩個素數(質數)的和”。這個猜想有個簡稱叫做1+1,這是個引起了很多誤解的叫法,為什么哥德巴赫猜想會被稱作1+1呢?

有人說哥德巴赫猜想就是證明1+1=2,這個是基本的一年級數學題,這個說法有點離譜了。還有人說1+1=2不是小學算式,其中1+1代表一個質數加另一個質數,2就代表偶數。#陳小紜前男友#首先1不是質數,2也不是哥德巴赫猜想中的偶數,猜想中最小偶數是6。再就是即使1可以代表質數,2也可以代表大于6的偶數,那也不能寫成1+1=2,因為這個算式語言表述應該是:“兩個質數的和是一個偶數”。這個也比較簡單啊,根本不需要哥德巴赫猜。#辟邪#
為什么被稱為1+1呢

哥德巴赫猜想常被稱為1+1,沒有后邊的=2。那么被稱為1+1的具體原因是什么呢?哥德巴赫猜想雖然看著比較簡單,但是實際上看懂題目了不一定會做,甚至很多人連思路都沒有,其主要包含四個方面:殆素數,例外集合,小變量的三素數定理以及幾乎哥德巴赫問題。#孔雀臺#
殆素數
殆素數就是素因子個數不多的正整數。#懶人摯愛#現設N是偶數,雖然不能證明N是兩個素數之和,但足以證明它能夠寫成兩個殆素數的和,即N=A+B,其中A和B的素因子個數都不太多,譬如說素因子個數不超過10。用“a+b”來表示如下命題:每個大偶數N都可表為A+B,其中A和B的素因子個數分別不超過a和b。顯然,哥德巴赫猜想就可以寫成"1+1"。在這一方向上的進展都是用所謂的篩法得到的。

“a + b”問題的推進
1920年,挪威的布朗證明了“9 + 9”。
1924年,德國的拉tm赫證明了“7 + 7”。
1932年,英國的埃斯特曼證明了“6 + 6”。
1937年,意大利的蕾西先后證明了“5 + 7”, “4 + 9”, “3 + 15”和“2 + 366”。
1938年,蘇聯的布赫夕太勃證明了“5 + 5”。
1940年,蘇聯的布赫夕太勃證明了“4 + 4”。
1956年,中國的王元證明了“3 + 4”。稍后證明了 “3 + 3”和“2 + 3”。
1948年,匈牙利的瑞尼證明了“1+ c”,其中c是一很大的自然數。
1962年,中國的潘承洞和蘇聯的巴爾巴恩證明了“1 + 5”, 中國的王元證明了“1 + 4”。
1965年,蘇聯的布赫 夕太勃和小維諾格拉多夫,及意大利的朋比利證明了“1 + 3 ”。
1966年,中國的陳景潤證明了 “1 + 2 ”。

到這里研究就截止了,幾十年過去了,仍然沒有其他進展,甚至有很多數學家認為陳景潤的定理是殆素數方法的極限,也就是說殆素數的思路根本證明不了哥德巴赫猜想。
雖然這種辦法還可以最終證明哥德巴赫猜想,但卻給了哥德巴赫猜想一個令人誤解的名字——1+1。
結語:這個研究過程是不是非常有趣,當然數學的發展也不是一帆風順的,在過程中也有數學三次重大危機,但是最終結果是好的就夠了。
Copyright ? 2024 有趣生活 All Rights Reserve吉ICP備19000289號-5 TXT地圖HTML地圖XML地圖